COMBINATORICA

Bolyai Society – Springer-Verlag

THE DISTANCE-REGULAR GRAPHS WITH INTERSECTION NUMBER $a_1 \neq 0$ AND WITH AN EIGENVALUE $-1 - (b_1/2)$

J. H. KOOLEN*

Received October 2, 1995 Revised November 26, 1997

In this paper we will classify the distance-regular graphs with intersection number $a_1 \neq 0$ and with an eigenvalue $-(b_1/2)-1$.

1. Introduction

Terwilliger [8] showed that if $a_1 \neq 0$, then $\theta \geq -(b_1/2) - 1$ for all eigenvalues θ of a distance-regular graph Γ , cf. [1, Theorem 4.4.3]. In this paper we will classify the distance-regular graphs with an eigenvalue $-(b_1/2) - 1$ and $a_1 \neq 0$. The main result is the following theorem.

Theorem 1. Let Γ be a distance-regular graph with intersection number $a_1 \geq 2$. Then Γ has eigenvalue $-b_1/2-1$ if and only if one of the following holds:

- (i) Γ is a clique.
- (ii) Γ is a connected strongly regular graph with second largest eigenvalue 1.
- (iii) Γ is the distance-regular graph with intersection array $\{10,6,4,1;1,2,6,10\}$.

In case of $a_1 = 1$ we will give the following combinatorial characterisation.

Theorem 2. Let Γ be a distance-regular graph with $a_1 = 1$ and diameter d. Then Γ has an eigenvalue $-1 - (b_1/2)$ if and only if there exist a $1 \le j \le d$ such that $a_i = c_i$ for i < j, $a_j = b_j + c_j$ and $a_i = b_i$ for i > j.

Remarks. (i) The graphs in Theorem 1 (ii) are the complements of strongly regular graphs with smallest eigenvalue at least -2. These are classified by Seidel [6].

Mathematics Subject Classification (1991): 05C

^{*} This research was supported by a NISSAN/NWO fellowship.

228 J. H. KOOLEN

(ii) The graph with intersection array $\{10,6,4,1;1,2,6,10\}$ is unique and locally the Petersen graph as shown by J. I. Hall [4].

In Section 2 we give some preliminary results, in Section 3 we classify the distance-regular graphs without an induced quadrangle and such that the local graphs have second largest eigenvalue at most 1, in Section 4 we look at distance-regular graphs which are locally the complement of a line graph, in Section 5 we give the proof of Theorem 1 and in Section 6 we give the proof of Theorem 2.

2. Preliminaries

All necessary definitions can be found in Brouwer, Cohen and Neumaier [1], and in Godsil [3]. For a graph Γ and a vertex $x \in V\Gamma$ denote the set $\{y \in V\Gamma \mid d(x,y) = i\}$ by $\Gamma_i(x)$. Instead of $\Gamma_1(x)$ we write $\Gamma(x)$. A distance-regular graph Γ is a connected graph with constants a_j , b_j , and c_j , $j=1,2,\ldots,d$, where d is the diameter of Γ , such that the following hold for any x and y at distance i, $|\Gamma_{i-1}(x) \cap \Gamma(y)| = c_i$, $|\Gamma_i(x) \cap \Gamma(y)| = a_i$, and $|\Gamma_{i+1}(x) \cap \Gamma(y)| = b_i$. A strongly regular graph is a graph with constants λ and μ , such that the number $|\Gamma(x) \cap \Gamma(y)|$ only depends on whether x and y are adjacent or not. In the first case this number is denoted by λ , in the second case by μ . A connected non-complete strongly regular graph is a distance-regular graph of diameter 2. Let Γ be a distance-regular graph. By θ_1 , we denote the second largest eigenvalue of Γ and by θ_d the smallest. For a vertex x of Γ we will denote the local graph on x, i.e. the graph induced by $\Gamma(x)$, by $\Delta(x)$. The starting point of this paper is the following proposition.

Proposition 3. Let Γ be a distance-regular graph with an eigenvalue $-b_1/2-1$. Then the local graph $\Delta(x)$ is a graph with second largest eigenvalue at most 1.

Proof. The local graph has second largest eigenvalue at most $-1 - b_1/(\theta_d + 1)$, cf. [1, Theorem 4.4.3]. Now the proposition follows easily, since $\theta_d = -b_1/2 - 1$.

The following proposition shows that the local graphs are connected and coconnected. We write $\overline{\Gamma}$ for the complement of a graph Γ .

Proposition 4. Let Γ be a distance-regular graph such that the local graphs $\Delta(x)$ have second largest eigenvalue at most 1 for all vertices x of Γ . Then the following hold:

- (i) If $a_1 > 1$, then $\Delta(x)$ is connected.
- (ii) If the diameter d is at least three then the complement of $\Delta(x)$, $\overline{\Delta(x)}$, is connected.

Proof. (i): Trivial. (ii): Suppose that $\overline{\Delta(x)}$ is disconnected and $d \ge 2$. Then each component of $\overline{\Delta(x)}$ has at least $b_1 + 1$ vertices. Hence $c_2 \ge b_1 + 2$, by $d \ge 2$, and so d = 2.

The complement of a graph with second largest eigenvalue 1 is a graph with smallest eigenvalue -2. We quote Theorem 5 without proof, for use in the proof of Theorem 1.

Theorem 5. (Bussemaker and Neumaier [2], cf. [1, Theorem 3.12.2]) Let Γ be a connected regular graph with v vertices, valency k and smallest eigenvalue ≥ -2 . Then one of the following holds:

- (i) Γ is the line graph of a regular or a bipartite semi-regular graph.
- (ii) $v = 2(k+2) \le 28$.
- $(iii) v = 3(k+2)/2 \le 27.$
- $(iv) v = 4(k+2)/3 \le 16.$
- (v) v = k + 2 and $\Gamma = K_{m \times 2}$ for some $m \ge 3$.

3. Graphs without induced quadrangles

In this section we classify the distance-regular graphs without an induced quadrangle, i.e. an induced 4-gon, and such that all local graphs have second largest eigenvalue at most 1. First we give some definitions.

Let Γ be a graph. Write for a vertex x of Γ , $x^{\perp} = \{x\} \cup \Gamma(x)$, and define an equivalence relation \equiv on $V\Gamma$ by letting $x \equiv y$ if and only if $x^{\perp} = y^{\perp}$. We shall write $\tilde{\Gamma}$ for the quotient Γ/\equiv and \tilde{x} for the equivalence class of x. (I.e., $\tilde{\Gamma}$ has vertices \tilde{x} for $x \in V\Gamma$ and $\tilde{x} \sim \tilde{y}$ when $x \sim y$ and $\tilde{x} \neq \tilde{y}$.) $\tilde{\Gamma}$ is called the *reduced graph* of Γ .

A Terwilliger graph is a non-complete graph Γ such that the graph induced by $\Gamma(x) \cap \Gamma(y)$ is a clique of size μ , $\mu \geq 2$, for any two vertices x and y at distance 2.

Note that a Terwilliger distance-regular graph is just a non-complete distance-regular graph without induced quadrangles.

We quote Theorems 6, 7 and 8 without proofs.

Theorem 6. (cf. [1, Theorem 3.12.4]) Let Γ be a connected strongly regular non-complete graph with smallest eigenvalue ≥ -1 . Then Γ is the pentagon, a triangular graph T(n), $(n \geq 3)$, a square grid $n \times n$, $(n \geq 3)$, a complete multipartite graph $K_{n \times 2}$, $(n \geq 2)$, or one of the graphs of Petersen, Schläfli, Clebsch, Shrikhande, or Chang.

Theorem 7. (cf. [1, Theorem 1.16.5]) There are up to isomorphism three connected locally Petersen graphs, namely:

- (i) The complement of the triangular graph T(7).
- $(ii) \ \ The \ distance-regular \ graph \ with \ intersection \ array \ \{10,6,4,1;1,2,6,10\}.$
- (iii) The distance-regular graph with intersection array $\{10,6,4;1,2,5\}$.

230 J. H. KOOLEN

Theorem 8. (cf. [1, Theorem 1.16.3]) Let Γ be a distance-regular Terwilliger graph with $c_2 \geq 2$, Fix $x \in V\Gamma$. Let $\Delta(x)$ be the subgraph induced by $\Gamma(x)$. Then the reduced graph $\widetilde{\Delta(x)}$ is strongly regular.

Proposition 9. If Γ is a distance-regular Terwilliger graph with $c_2 \geq 2$, such that all the local graphs $\Delta(x)$ have second largest eigenvalue at most 1, then Γ is

- (i) an icosahedron,
- (ii) the distance-regular graph with intersection array $\{10,6,4,1;1,2,6,10\}$, or
- (iii) the distance-regular graph with intersection array $\{10,6,4;1,2,5\}$.

Proof. For all $x \in V\Gamma$ the local graph $\Delta(x)$ is connected, otherwise there would be induced quadrangles. Hence we find $a_1 \geq 2$. By Theorem 8 we find that the graph $\widetilde{\Delta(x)}$ must be a strongly regular graph with second largest eigenvalue at most 1. The complement of a graph with second largest eigenvalue at most 1 is a graph with smallest eigenvalue at least -2. By looking at the possibilities of Theorem 6, the graph $\widetilde{\Delta(x)}$ is a pentagon or the Petersen graph. In both cases we find $\Delta(x) = \widetilde{\Delta(x)}$. If Γ is locally the pentagon then Γ is the icosahedron. If Γ is locally the Petersen graph then by Theorem 7, Γ must be one of the last two graphs in the statement.

4. Locally co-line graphs

The following inequalities of Terwilliger [7] will be used to bound the diameter of a distance-regular graph with an induced quadrangle.

Theorem 10. (Terwilliger [7], cf. [1, Theorem 5.2.1]) Let Γ be a distance-regular graph with an induced quadrangle. Then

$$c_i - b_i \ge c_{i-1} - b_{i-1} + a_1 + 2, \qquad (i = 1, 2, \dots, d).$$

Terwilliger [9] classified the distance-regular graphs which have equality for $i=1,2,\ldots,d$ in the above inequalities.

Theorem 11. (Terwilliger [9], cf. [1, Theorem 5.2.3]) Let Γ be a distance-regular graph with diameter $d \ge (k + c_d)/(a_1 + 2)$. Then one of the following holds:

- (i) Γ does not have an induced quadrangle.
- (ii) Γ is strongly regular with smallest eigenvalue -2.
- (iii) Γ is a Hamming graph, a Doob graph, a locally Petersen graph, a Johnson graph, a halved cube, or the Gosset graph.

Proposition 12. Let Γ be a distance-regular graph with diameter $d \geq 3$, $a_1 \geq 2$ and an eigenvalue $-1 - (b_1/2)$, which has an induced quadrangle and such that for all vertices x the graph $\Delta(x)$ induced on $\Gamma(x)$ is connected and the complement of a

line graph. Then the pair (k, a_1) is one of the following: (27, 16), (24, 13), (20, 11), (15, 6), (14, 7), (12, 5), (10, 3), or (9, 4).

Proof. We may assume that $d \ge 3$. Let x be a vertex of Γ . The graph $\Delta(x)$ is the complement of a line graph of a graph, say $\Lambda(x)$. The graphs $\Delta(x)$ and $\Lambda(x)$ are connected by Proposition 4 and by Theorem 5 we have two cases: $\Lambda(x)$ is bipartite semi-regular with two different valencies, or $\Lambda(x)$ is regular.

Case 1. $\Lambda(x)$ is semi-regular with two different valencies.

Let l < m be the two valencies of $\Lambda(x)$. Then $k \ge lm$ and $b_1 = l + m - 2$. By Theorem 10 it follows that $k \le 3b_1 - 3$ and hence $lm \le 3l + 3m - 9$. If $l \ge 4$, then $m \le 3$, contradiction. So $l \le 3$.

If l=3, then $d \le 3$, k=3m and $b_1=m+1$. The case d=3 is excluded by Theorem 11, as k=3m and $b_1=m+1$.

If l=2, then $k \leq 3m-3$. If k>2m, then $k\geq 3m$. Hence k=2m and $\Lambda(x)=K_{2,m}$. It follows that $c_2\geq m-1$. Now $k_2=kb_1/c_2=2m^2/c_2$, and it follows that $c_2\geq m$, unless we are in the case m=3. So Γ is a Taylor graph, cf. [1, Theorem 1.5.5], or m=3. A Taylor graph is locally a strongly regular graph, cf. [1, Theorem 1.5.3] and the line graph of $K_{2,m}$ is only strongly regular if $m\leq 2$, and hence we have m=3 or $d\leq 2$.

If l=1, then $b_1=m-1$ and $c_2 \ge m$ when $k \ge m+1$. So $d \le 2$.

Case 2. $\Lambda(x)$ is regular.

We may assume that $\Lambda(y)$ is regular for all $y \in V\Gamma$. We denote by w the number of vertices of $\Lambda(x)$, and by l the valency of $\Lambda(x)$. Then k = wl/2 and $b_1 = 2(l-1)$. By Theorem 10 it follows that $k \leq 3b_1 - 3$, and hence $wl \leq 12l - 18$. If w = l + 1, then $\Lambda(y)$ is a clique of size l + 1 for all vertices y and J.I. Hall showed in [5] that d = 2 if $w \geq 7$. So we may assume that $w \geq l + 2$. Then we obtain $l \leq 7$. Now by checking all pairs (w, l) with $l \leq 7$, satisfying $wl \leq 12l - 18$ and wl is even, we find the pairs in the proposition.

5. Proof of Theorem 1

Let Γ be a distance-regular graph with eigenvalue $-b_1/2-1$. If d=1, then Γ is complete and we are in case (i). If d=2, then Γ is strongly regular and the eigenvalues $\theta_1=r$ and $\theta_2=s$ satisfy the equation $x^2+(c_2-a_1)x+c_2-k=0$. Therefore, $r+s=a_1-c_2$, $rs=c_2-k$ and by the hypothesis, $b_1(r+1)=-2(r+1)(s+1)=2k-2a_1-2=2b_1$. Since $b_1\neq 0$ we find r=1, and (ii) holds.

By Proposition 3, all the subgraphs $\Delta(x)$ have second largest eigenvalue at most 1. Suppose first that Γ does not contain an induced quadrangle. Then, by Proposition 9, Γ is the icosahedron or Γ has intersection array $\{10,6,4,1,1,2,6,10\}$ or $\{10,6,4;1,2,5\}$. But the icosahedron and the distance-regular graph with intersection array $\{10,6,4;1,2,5\}$ do not have an eigenvalue $-b_1/2-1$.

J. H. KOOLEN

Otherwise Γ has an induced quadrangle. The complement of a graph with second largest eigenvalue at most 1 has smallest eigenvalue at least -2. By Proposition 4, the complement of the local graph $\Delta(x)$, $\overline{\Delta(x)}$ is connected, hence we can apply Theorem 5. If $\overline{\Delta(x)}$ is not a line graph then the pair (k,b_1) is one of the following, (2(t+2),t), $3 \le t \le 12$, (3(u+1),2u), $1 \le u \le 8$, (4v,3v-2), $2 \le v \le 4$. If $\overline{\Delta(x)}$ is a line graph then, by Proposition 12, the pair (k,b_1) is one of the following, (27,10), (24,10), (20,8), (15,8), (14,6), (12,6), (10,6), (9,4). Using Theorem 10, we deduce that $d \le 4$ and $|V\Gamma| \le 900$. (This is obtained by looking at the pair (27,10).) Therefore the intersection array of Γ is included in the tables of [1, Chapter 14]. By checking each possible pair (k,b_1) we find that Γ is either the unique graph with intersection array $\{10,6,4;1,2,5\}$, or an antipodal graph of diameter 3. In the first case, the graph has no quadrangles, a contradiction. In the second case, for each pair (k,b_1) we calculate the two non-trivial eigenvalues using the information of [1, page 431], assuming that $\theta_d = -(b_1/2) - 1$. But then in none of the cases we find that c_2 divides b_1 , which should be the case. So we get a contradiction.

It is easy to see that in all the three cases of Theorem 1 the graphs have an eigenvalue $-(b_1/2)-1$. So this completes the proof of the theorem.

6. Proof of Theorem 2

In this section we will give a combinatorial characterisation of the distance-regular graphs with $a_1=1$ and an eigenvalue $-b_1/2-1$. First we need some definitions. Let Γ be a graph. Let $\emptyset \neq C \subset V\Gamma$. Define for a vertex x of Γ the distance d(x,C) as the minimum of d(x,y) where $y \in C$. Define for a subset $\emptyset \neq C \subseteq V\Gamma$ and an integer i, the set C_i by $C_i := \{y \in V\Gamma \mid d(y,C) = i\}$. Furthermore define $\rho(C)$ as the maximum i such that $C_i \neq \emptyset$. A subset $\emptyset \neq C \subset V\Gamma$ is called a *completely regular code* if the cardinality of $\Gamma_j(x) \cap C$ only depends on j and d(x,C) The following lemma gives a bound on the size of a complete subgraph in a distance regular graph and is due to Godsil.

Lemma 13. (cf. [3, Chapter 13, Lemmata 7.1, 7.2]) Let Γ be a distance-regular graph with valency k, diameter d and smallest eigenvalue θ_d . If C is a clique of Γ , then

$$|C| \le 1 + \frac{k}{-\theta_d}.$$

If equality holds then C is a completely regular code with $\rho(C) = d-1$ and its parameters are uniquely determined.

Proof. Let E be the primitive idempotent with respect to θ_d . Define for a vertex x the vector \hat{x} by $\hat{x}_y := \delta_{xy}$ for $y \in V\Gamma$, where δ_{xy} denotes the Kronecker delta. Define $\hat{\gamma}$ by $\hat{\gamma} := \sum_{x \in C} \hat{x}$, and for i = 0, 1, ..., d define u_i by $u_i := \hat{y}^T E \hat{x}$, where x, y are two

vertices at distance i. Define the matrix M by

$$M := \hat{\gamma}^T E \hat{\gamma}.$$

We have $M = u_1 J + (1 - u_1) I$. Note that $u_1 = \theta_d / k$. The matrix M is positive semi-definite and therefore $1 + (|C| - 1)u_1 \ge 0$. The inequality follows easily.

Furthermore equality holds if and only if $1 + (|C| - 1)u_1 = 0$ and therefore if and only if $E\hat{\gamma} = \mathbf{0}$. Let y be at distance i from C. Let $\alpha(y)$ be the cardinality of $\Gamma_i(y) \cap C$. Then $0 = (E\hat{y})^T E\hat{\gamma} = \alpha(y)u_i + (|C| - \alpha)u_{i+1}$. This means that $\alpha(y)$ does not depend on y but only on the distance d(y,C), otherwise $u_i = u_{i+1} = 0$, which is impossible for a distance-regular graph. It also follows that $d(y,C) \leq d-1$, otherwise $u_d = 0$, again an impossibility for a distance-regular graph. So we are done.

Proof of Theorem 2. The if part is not difficult to see.

By Lemma 13 we find that a triangle C in Γ is a completely regular code with covering radius $\rho(C) = d - 1$. Let x be a vertex. Let y be a vertex of Γ at distance $i \geq 1$ from x. Now let C be a triangle of Γ such that $y \in C$ and d(x,C) = i - 1. Because by Lemma reflemged the parameters of C as completely regular code are uniquely determined, the theorem follows now easily.

Remarks. (i) Of course, for bipartite graphs the smallest eigenvalue is -k and this is usually smaller then $-1-(b_1/2)$. Also for $a_1=0$ there are many examples known where $-1-(b_1/2)$ is an eigenvalue.

(ii) For $a_1 = 1$ all the regular near 2n-gons have $-1 - (b_1/2)$ as an eigenvalue and there are many examples known. Except for those regular near 2n-gons the author knows of only one example with $a_1 = 1$ and eigenvalue $-1 - (b_1/2)$, namely the distance-regular graph with intersection array $\{6, 4, 2, 1; 1, 1, 4, 6\}$.

References

- [1] A. E. Brouwer, A. M. Cohen and A. Neumaier: Distance-Regular Graphs, Ergebnisse der Mathematik 3.18, Springer, Heidelberg (1989).
- [2] F. C. Bussemaker, and A. Neumaier: Exceptional graphs with smallest eigenvalue -2 and related problems, *Mathematics of Computation*, **59** (200) (1992), 583-608.
- [3] C. D. Godsil: Algebraic Combinatorics, Chapman and Hall, New York (1993).
- [4] J. I. HALL: Locally Petersen graphs, Journal of Graph Theory, 4 (1980), 173–187.
- [5] J. I. HALL: A local characterization of the Johnson graphs, Combinatorica, 7 (1987), 77–85.
- [6] J. J. SEIDEL: Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3, Lin. Alq. Appl., 1 (1968), 281-298.

- [7] P. TERWILLIGER: Distance-regular graphs with girth 3 or 4, I, *Journal Combin. Th.* (B), **39** (1985), 265–281.
- [8] P. Terwilliger: A new feasibility condition for distance-regular graphs, *Discrete Math.*, **61** (1986), 311–315.
- [9] P. TERWILLIGER: Root systems and the Johnson and Hamming graphs, European J. Combin., 8 (1987), 73–102.

J. H. Koolen

Graduate School of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, Japan jackk@win.tue.nl